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• Start: October 2017
• End: September 2020
• 50% complete

BUDGET

PARTNERS

• Total project funding
• $6M / 3 years
• $2M per year / 3 Labs

• CalTrans Connected Corridors

• HERE Technologies

• Metropolitan scale networks 
are too complex to model in 
reasonable compute time.

• Sensors for capturing 
dynamics provide limited view 
and are difficult to mine for 
relevant information.

• Optimization of energy, travel 
time and mobility across 
complex networks has yet to 
be accomplished for real-
world metropolitan scale 
networks.

BARRIERSTIMELINE



RELEVANCE – PROJECT OBJECTIVES

• Overall Objective: 
• Develop HPC tools to rapidly model large scale transportation 

networks using real-world, near real-time data.  Integrate energy, travel 
time and mobility measures to determine optimization opportunities.

• Objectives this Period:
• Improved capability for capturing metropolitan scale traffic dynamics with 

dynamic routing capabilities – the first step to modeling dynamics 
with active control.

• Improve estimates of the energy cost and productivity loss of 
congestion using data-driven approach.

• Analyze real-world sensor data to understand network demand and 
improve link level models in the simulation.

• Impact:
• Develop new active control ideas for connected vehicles that will 

optimize energy, travel time and mobility for normal traffic conditions 
and networks under stress.
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PROJECT GOALS
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KEY MILESTONES
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Key Go/NoGo milestones have been achieved in FY17/FY18



COMPONENTS OF THE APPROACH
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CHALLENGES WITH SENSOR DATA MODELING

• Complex spatial 
dependency

• Non-stationary temporal 
dynamics

• Non-Euclidean spatial 
geometry

• Modelling each sensor 
independently fails to 
capture the spatial 
correlation

772954 - WB

772953 - EB

772933 - WB
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PeMS Data : Inductive loop sensors in major highways



FORECASTING VEHICLE DYNAMICS USING DCRNN
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Combining the Diffusion Convolution with a Recurrent Neural Network 
into a Diffusion Convolutional Recurrent Neural Network (DCRNN) allows for

predicting speeds and flows from inductive loop sensors.



FLOW PREDICTION : 162 LOOP DETECTORS
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DCRNN tracks the real-world flows

• District: Los Angeles (D7)



MEAN AVERAGE ERROR FOR ALL LOOP DETECTORS
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MAE is usually under 3 miles per hour



MAP PARTITIONING USING METIS

Group1 Group2

Group 4

Group8

Group3

Group7

Group5

Group6
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Districts: 
• Los Angeles (D7)
• San Bernardino/Riverside (D8)

Number of loop detectors: 2036



DCRNN RESULTS : NEXT STEP MOBILE DEVICE 
INTEGRATION
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12

MAE is usually under 3 miles per hour

Group: 5 
Node: 262

Group: 6 
Node: 250

Mobile device trajectories for 1210 segment



MOBILITI RESULTS WITH EXPANDED SF DEMAND MODEL 

Demand 22M ODS
Network Size 2M links, 1 M nodes
Run Time 1 minute
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UBER MOVEMENT VALIDATION OF SIMULATION

Travel time difference beyond 10 minute difference 
Map anomalies or demand anomalies being investigated

OSM map currently being replaced by professional grade map

22 Million Trip Legs
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IMPACTS OF SYSTEM LEVEL DYNAMIC ROUTING
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Ten million minutes of travel time, 64 thousand gallons of 
fuel (across 25% of vehicles), and $2.24 million 
productivity loss were saved due to dynamic rerouting, at 
the cost of increasing total distance by 368 thousand 
extra vehicle kilometers.

Average Reroute Time Saved per hour

Example Event 
Based Reroute



ENERGY CONSUMPTION ESTIMATES FROM REAL-WORLD 
MOBILE DEVICE DATA
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ML Derived Fuel and Energy Consumption Rates 
for Plug-In Hybrid Vehicles from ANL D3 DatasetsSample Trajectory in Congestion

Accumulative Energy and Fuel Consumption for Sample Trajectory



ML MODELS FOR ENERGY CONSUMPTION RATE FOR 
SAMPLE TRAJECTORIES ON I210 
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Trajectories from Mobile Devices on I210

Energy Consumption Sample for Three Vehicles Types



RESPONSE TO PREVIOUS YEAR COMMENTS

Comment : Project Team is just scratching the surface, but that team has to think 
of “what the end game” is for analysis.
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Comment : The problem being solved is critical to the 
type of simulations needed for transportation planning. 
Reducing computation time is critical if these and 
other models are going to be useful.

We thank the reviewers for the positive comments about 
the impact this effort can have on the goals of DOE.

The impact of HPC has great promise to change the way planners approach 
transportation planning.  We have made significant progress in the first phase by 
leveraging existing tools in the super computing community.  We already have some 
active control on our roadways.  We hope to provide the capability to design active 
control strategies by routing for energy reduction across the full fleet of 
future connected vehicles. Emergency management planning could benefit greatly 
from metropolitan scale simulations that can be run for large numbers of scenarios 
with this magnitude of reduction in computation time.

Uncoordinated active control



COLLABORATION AND COORDINATION
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National Laboratories : HPC Modeling

Government and Academia : Infrastructure Data

Industry : Mobility Data



CHALLENGES AND PROPOSED FUTURE RESEARCH

• Use of mobile device data as virtual sensors to expand geospatial 
extent of sensing capabilities for government agencies

• Integration of additional real-world sensors – eg. weather

• Understanding how to integrate learned link dynamics into 
existing simulation while maintaining reduced computational time 

• Validation with other simulation efforts – TTI and  Texas A&M

• Validation with Uber speed data

• Validation of data driven energy estimates from mobile device 
trajectories

Any proposed future work is subject to change based on funding levels.
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Next Phase :  Surrogate ML models from Mobiliti results
Open sourcing of Mobiliti for multiple cities
Development of active control algorithms for connected vehicles



SUMMARY
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Average Link Speeds for Bay Area 
• Expanded Mobiliti simulation 

capability to model 22M OD 
integrated micro analysis zones

• Developed active control mechanism 
in Mobiliti

• Integrated Traffic Assignment models 
into the framework for comparison 
and validation

• Validating model with Uber travel time 
data

• Introduced well performing ML 
models for capturing traffic dynamics 
using loop sensors

• Developed data driven energy models 
from mobile device trajectories for 7 
vehicle types

Data Driven ML Energy Models

DCRNN Models for Predicting Speed/Flow



TECHNICAL BACKUP SLIDES
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MOBILITI LAYERED ARCHITECTURE

[1] David R. Jefferson. 1985. Virtual time. ACM Trans. Program. Lang. Syst. 7, 3 (July 1985), 404-425
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USING ML FOR PREDICTING TRAFFIC METRICS

Data includes:
• Timestamp
• Loop IDs
• District
• Freeway name 
• Freeway direction
• Total flow 
• Average speed 

• ~18K sensors

Freeway Given:
• Historic traffic metrics [speed, flow]
• Road network distance and connectivity
Predict:

Future traffic metrics
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GRAPH REPRESENTATION OF ROAD NETWORK

Transportation network as graph
• V = Vertices (sensors)
• E = Edges (roads)
• A = Weighted adjacency matrix 

(A function of the road network distance) 
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LSTM MODELS FOR ENERGY CONSUMPTION PLUG-IN 
HYBRID ELECTRIC VEHICLES
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TRAJECTORY FUEL CONSUMPTION RATES WRT
TRAJECTORY AVERAGE SPEED AND SPEED VARIANCE 

27

Nissan Altima

Average Trajectory
Speed  Dominant

Average Trajectory Speed  and 
Speed  Variance Dominant
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